Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Powertrain Solutions for Electrified Trucks and Buses

2017-05-10
2017-01-1937
Local air pollution, noise emissions as well as global CO2 reduction and public pressure drive the need for zero emission transport solutions in urban areas. OEMs are currently developing battery electric vehicles with the focus to provide emission free urban transportation combined with lowest total cost of ownership and consequently a positive business case for the end customers. Thereby the main challenges are electric range, product cost, system weight, vehicle packaging and durability. Hence they are the main drivers in current developments. In this paper AVL describes two of its truck and bus solutions - a modular battery concept as well as a concept for an integrated electric axle. Based on the vehicle requirements concept designs for both systems are presented.
Technical Paper

Impact of GHG-Phase II and Ultra Low NOx on the Base Powertrain

2017-05-10
2017-01-1925
With the implementation of EURO VI and similar emission legislation, the industry assumed the pace and stringency of new legislation would be reduced in the future. The latest announcements of proposed and implemented legislation steps show that future legislation will be even more stringent. The currently leading announced legislation, which concerns a large number of global manufacturers, is the legislation from the United States (US) Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). Both announced new legislation for CO2, Greenhouse Gas (GHG) Phase II. CARB is also planning additional Ultra Low NOx regulations. Both regulations are significant and will require a number of technologies to be used in order to achieve the challenging limits. AVL published some engine related measures to address these legislation steps.
Technical Paper

Highly Integrated Fuel Cell Analysis Infrastructure for Advanced Research Topics

2017-03-28
2017-01-1180
The limitation of global warming to less than 2 °C till the end of the century is regarded as the main challenge of our time. In order to meet COP21 objectives, a clear transition from carbon-based energy sources towards renewable and carbon-free energy carriers is mandatory. Polymer electrolyte membrane fuel cells (PEMFC) allow an energy-efficient, resource-efficient and emission-free conversion of regenerative produced hydrogen. For these reasons fuel cell technologies emerge in stationary, mobile and logistic applications with acceptable cruising ranges as well as short refueling times. In order to perform applied research in the area of PEMFC systems, a highly integrated fuel cell analysis infrastructure for systems up to 150 kW electric power was developed and established within a cooperative research project by HyCentA Research GmbH and AVL List GmbH in Graz, Austria. A novel open testing facility with hardware in the loop (HiL) capability is presented.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Technical Paper

Scale-Resolving Simulations of the Flow in Intake Port Geometries

2016-04-05
2016-01-0589
A computational study of the flow in intake port geometries has been performed. Three different intake port geometries, namely two combined tangential and helical ports and one quiescent port were analyzed. Each of these cases was calculated for different valve lifts and the results were compared with available measurements. The focus of this paper is on the performance assessment of the variable resolution Partial-Averaged Navier-Stokes (PANS) method. Calculations have been also performed with the Reynolds-averaged Navier-Stokes (RANS) model, which is presently a state-of-the-art approach for this application in the industry. Besides the averaged integral values like a discharge coefficient and a swirl coefficient, the predicted velocity magnitude fields at the measured cross sections of the ports are compared due to available Particle Image Velocimetry (PIV) measurements.
Journal Article

Lift-Off Length in an Optical Heavy-Duty Diesel Engine: Effects of Swirl and Jet-Jet Interactions

2015-09-06
2015-24-2442
The influence of jet-flow and jet-jet interactions on the lift-off length of diesel jets are investigated in an optically accessible heavy-duty diesel engine. High-speed OH chemiluminescence imaging technique is employed to capture the transient evolution of the lift-off length up to its stabilization. The engine is operated at 1200 rpm and at a constant load of 5 bar IMEP. Decreasing the inter-jet spacing shortens the liftoff length of the jet. A strong interaction is also observed between the bulk in-cylinder gas temperature and the inter-jet spacing. The in-cylinder swirl level only has a limited influence on the final lift-off length position. Increasing the inter-jet spacing is found to reduce the magnitude of the cycle-to-cycle variations of the lift-off length.
Journal Article

Lift-Off Length in an Optical Heavy-Duty Diesel Engine

2015-04-14
2015-01-0793
High-speed OH chemiluminescence imaging is used to measure the lift-off length of diesel sprays in an optical heavy-duty diesel engine of 2 L displacement operated at 1200 rpm and 5 bar IMEP. Stereoscopic images are acquired at two different wavelengths (310 and 330 nm). Subtraction of pairwise images helps reducing the background coming from natural soot incandescence in the OH chemiluminescence images. Intake air temperature (343 to 403 K), motored top dead center density (18 to 22 kg/m3), fuel injection pressure (150 to 250 MPa), intake oxygen concentration (17 to 21 %vol) and nozzle diameter (0.1 and 0.14 mm) are varied and a nonlinear regression model is derived from the experimental results to describe stabilized lift-off length as function of the experimental factors. The lift-off length follows the general trends that are known from spray vessel investigations, but the strength of the dependence on certain variables deviates strongly from those studies.
Technical Paper

Integrated Toolchain for Powertrain Optimization for Indian Commercial Vehicles

2015-01-14
2015-26-0032
Best fuel efficiency is one of the core requirements for commercial vehicles in India. Consequently it is a central challenge for commercial vehicle OEMs to optimize the entire powertrain, hence match engine, transmission and rear axle specifications best to the defined application. The very specific real world driving conditions in India (e.g. traffic situations, road conditions, driver behavior, etc.) and the large number of possible commercial powertrain combinations request an efficient and effective development methodology. This paper presents a methodology and tool chain to specify and develop commercial powertrains in a most efficient and effective way. The methodology is based on the measurement of real world driving scenarios, identification of representative Real World Driving Profiles and vehicle system simulation which allows extended analysis of the road topography, the traffic situation as well as the driver behavior.
Technical Paper

Analysis of EGR/Air Mixing by 1-D Simulation, 3-D Simulation and Experiments

2014-10-13
2014-01-2647
The use of EGR for NOX reduction is today a standard technology for diesel engines. The mixing of air and EGR is an important issue, especially for high-pressure EGR-systems. An uneven distribution of EGR between the cylinders can lead to higher overall engine emissions when some cylinders produce more soot, others more NOX than they would with a perfectly even distribution. It is therefore important to understand the processes that control the mixing between air and EGR. The mixing is influenced by both the geometry of the mixing area and the pulsating nature of the flow. The aim of this work is to point out the high importance of the pulses present in the EGR-flow. By simulation in 1-D and 3-D as well as by a fast measurement method, it is shown that the EGR is transported in the air flow in packets. This implies that the timing between intake valve opening and the positioning of the EGR packets has a high influence of the distribution of EGR between the cylinders.
Technical Paper

Multi Cylinder Partially Premixed Combustion Performance Using Commercial Light-Duty Engine Hardware

2014-10-13
2014-01-2680
This work investigates the performance potential of an engine running with partially premixed combustion (PPC) using commercial diesel engine hardware. The engine was a 2.01 SAAB (GM) VGT turbocharged diesel engine and three different fuels were run - RON 70 gasoline, RON 95 Gasoline and MK1 diesel. With the standard hardware an operating range for PPC from idle at 1000 rpm up to a peak load of 1000 kPa IMEPnet at 3000 rpm while maintaining a peak pressure rise rate (PPRR) below 7 bar/CAD was possible with either RON 70 gasoline and MK1 diesel. Relaxing the PPRR requirements, a peak load of 1800 kPa was possible, limited by the standard boosting system. With RON 95 gasoline it was not possible to operate the engine below 400 kPa. Low pressure EGR routing was beneficial for efficiency and combined with a split injection strategy using the maximum possible injection pressure of 1450 bar a peak gross indicated efficiency of above 51% was recorded.
Technical Paper

Using Oxygenated Gasoline Surrogate Compositions to Map RON and MON

2014-04-01
2014-01-1303
Gasoline fuels are complex mixtures which consist of more than 200 different hydrocarbon species. In order to decrease the chemical and physical complexity, oxygenated surrogate components were used to enhance the fundamental understanding of partially premixed combustion (PPC). The ignition quality of a fuel is measured by octane number. There are two methods to measure the octane number: research octane number (RON) and motor octane number (MON). In this paper, RON and MON were measured for a matrix of n-heptane, isooctane, toluene, and ethanol (TERF) blends spanning a wide range of octane number between 60.6 and 97. First, regression models were created to derive RON and MON for TERF blends. The models were validated using the standard octane test for 17 TERF blends. Second, three different TERF blends with an ignition delay (ID) of 8 degrees for a specific operating condition were determined using a regression model.
Technical Paper

Mixing in Wall-Jets in a Heavy-Duty Diesel Engine: A LES Study

2014-04-01
2014-01-1127
The paper presents a large eddy simulation investigation on the effect of fuel injection pressure on mixing, in an optical heavy-duty diesel engine. Recent investigation on impinging wall jets at constant-volume and quiescent conditions exhibited augmented air entrainment in wall jets with increasing injection pressure, when compared with a free jet. The increased mixing rates were explained as owing to enhanced turbulence and vortex formation in the jet-tip in the recirculation zone. A recent investigation carried out in an optical heavy-duty diesel engine indicated however a negligible effect of injection pressure on the mixing in the engine environment. The effect of enhanced turbulence and vortex formation of the jet-tip in the recirculation zone is believed weaker than the effect of engine confinement, due to the presence of fuel from adjacent jets limiting the mixing the fuel with the ambient gas.
Technical Paper

Radiocarbon and Hydrocarbon Analysis of PM Sources During WHTC Tests on a Biodiesel-Fueled Engine

2014-04-01
2014-01-1243
PM in diesel exhaust has been given much attention due to its adverse effect on both climate and health. As the PM emission levels are tightened, the portion of particles originating from the lubrication oil is likely to increase. In this study, exhausts from a biodiesel-fueled Euro 5 engine were examined to determine how much of the carbonaceous particles that originated from the fuel and the lubrication oil, respectively. A combination of three methods was used to determine the PM origin: chain length analysis of the hydrocarbons, determination of organic and elemental carbon (OC and EC), and the concentration of 14C found in the exhausts. It was found that the standard method for measuring hydrocarbons in PM on a filter (chain length analysis) only accounted for 63 % of the OC, meaning that it did not account for all non-soot carbon in the exhausts.
Technical Paper

Investigation of Chemical Kinetics on Soot Formation Event of n-Heptane Spray Combustion

2014-04-01
2014-01-1254
In this reported work, 2-dimsensional computational fluid dynamics studies of n-heptane combustion and soot formation processes in the Sandia constant-volume vessel are carried out. The key interest here is to elucidate how the chemical kinetics affects the combustion and soot formation events. Numerical computation is performed using OpenFOAM and chemistry coordinate mapping (CCM) approach is used to expedite the calculation. Three n-heptane kinetic mechanisms with different chemistry sizes and comprehensiveness in oxidation pathways and soot precursor formation are adopted. The three examined chemical models use acetylene (C2H2), benzene ring (A1) and pyrene (A4) as soot precursor. They are henceforth addressed as nhepC2H2, nhepA1 and nhepA4, respectively for brevity. Here, a multistep soot model is coupled with the spray combustion solver to simulate the soot formation/oxidation processes.
Technical Paper

Technology Features and Development Methods for Spark Ignited Powertrain to Meet 2020 CO2 Emission Targets

2013-10-07
2013-36-0438
For achieving the forthcoming CO2 emission targets of 95g/km by 2020 and for the years beyond, comprehensive activities for powertrain technology as well as development methodology has to be utilized. It will by far not be enough to add a few single technology features to achieve the desired result. More and more the success will result from comprehensive combining of synergetic utilization of complementary effects. This will be the powertrain perfectly matched to the vehicle, including the energy source, and all together integrated by means of advanced development tools and methodology.
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Technical Paper

Multi-Component Modeling of Diesel Fuel for Injection and Combustion Simulation

2013-09-08
2013-24-0007
Accurate simulation tools are needed for rapid and cost effective engine development in order to meet ever tighter pollutant regulations for future internal combustion engines. The formation of pollutants such as soot and NOx in Diesel engines is strongly influenced by local concentration of the reactants and local temperature in the combustion chamber. Therefore it is of great importance to model accurately the physics of the injection process, combustion and emission formation. It is common practice to approximate Diesel fuel as a single compound fuel for the simulation of the injection and combustion process. This is in many cases sufficient to predict the evolution of the in-cylinder pressure and heat release in the combustion chamber. The prediction of soot and NOx formation depends however on locally component resolved quantities related to the fuel liquid and gas phase as well as local temperature.
Journal Article

Overview of Soot Emission Measurements Instrumentation: From Smoke and Filter Mass to Particle Number

2013-03-25
2013-01-0138
Particulate emissions cause adverse health effects and for this reason they are regulated since the 80s. Vehicle regulations cover particulate emission measurements of a model before its sale, known as type approval or homologation. For heavy-duty engines the emissions are measured on an engine dynamometer with steady state points and transient cycles. For light-duty vehicles (i.e. the full power train) the particulate emissions are assessed on a chassis dynamometer. The measurement of particulate emissions is conducted either by diluting the whole exhaust in a dilution tunnel with constant volume sampling or by extracting a small proportional part of the exhaust gas and diluting it. Particulate emissions are measured by passing part of the diluted exhaust aerosol through a filter paper. The increase of the weight of the filter is used to calculate the particulate matter mass (PM) emissions.
Technical Paper

A Novel Ultrasonic Intake Air Flow Meter for Test Bed Applications

2013-01-09
2013-26-0118
The development process of a combustion engine is now a days strongly influenced by future emission regulations which require further reduction in fuel consumption and precise control of combustion process based on Intake air measurement, during engine development. Intake air flow meters clearly differentiate themselves from typical industrial gas flow meters because of their ability to measure extremely dynamic phenomenon of combustion engine. Thus, high internal data acquisition rate, short response time, ability to measure pulsating and reverse flows with lower measurement uncertainty are the factors that ensures the reliability of the results without being affected by ambient influences, sensor contamination or sensor aging. The AVL developed FLOWSONIX™ is based on ultrasonic transit time measuring principle with broad-band Capacitive Ultrasonic Transducer (CUT) characterized by an excellent air impedance matching strongly distinguishes itself by fulfilling all those requirements.
Technical Paper

Advanced Methods for Calibration and Validation of Diesel-ECU Models Using Emission and Fuel Consumption Optimization and Prediction During Dynamic Warm Up Tests (EDC)

2013-01-09
2013-26-0113
A calibration and validation workflow will be presented in this paper, which utilizes common static global models for fuel consumption, NOx and soot. Due to the applicability for warm-up tests, e.g. New European Driving Cycle (NEDC), the models need to predict the temperature influence and will be fitted with measuring data from a conditioned engine test bed. The applied model structure consisting of a number of global data-based sub-models is configured especially for the requirements of multi-injection strategies of common rail systems. Additionally common global models for several constant coolant water temperature levels are generated and the workflow tool supports the combination and segmentation of global nominal map with temperature correction maps for seamless and direct ECU setting.
X